Review three great discoveries by the “grandfather” of gravity research, Galileo Galilei. His most famous experiment may never have happened, but his principle of inertia, law of free fall, and principle of relativity are the basis for everything that comes later in the science of gravity—including key breakthroughs by Einstein.
Learn how distances in the solar system were first determined. Then chart Henry Cavendish’s historic experiment that found the value of Newton’s gravitational constant. Cavendish’s work allows almost everything in the universe to be weighed. Then see a confirmation of the equivalence principle, which says that gravitational and inertial mass are identical.
Einstein focused on gravity in his general theory of relativity. Hear about his “happiest thought”—the realization that a man in free fall perceives gravity as zero. This simple insight resolved a mystery going all the way back to Newton and led Einstein to the startling discovery that gravity affects light and time.
See how gravity affects Minkowski’s spacetime geometry, discovering that motion in a gravitational field follows the straightest path in curved spacetime. The curvature in spacetime is not caused by gravity; it is gravity. This startling idea is the essence of Einstein’s general theory of relativity.
See how Einstein’s general theory of relativity predicts the bending of light in a gravitational field, famously confirmed in 1919 by the British scientist Arthur Eddington. Learn how this phenomenon creates natural gravitational lenses—and how the bending of light reveals invisible matter in deep space.
Investigate what Einstein called his “greatest mistake”—his rejection of his own theory’s prediction that spacetime should be dynamic and evolving. Chart the work of a group of scientists, including Alexander Friedman, Georges Lemaître, and Edwin Hubble, who advanced the realization that our universe is expanding from an apparent big bang.
cosmic antigravity, starting with cosmic inflation, a phenomenon that exponentially increased the size of the universe during the big bang. Then, learn why dark matter cannot be made of ordinary protons and neutrons, and explore the recent discovery that the expansion of the universe is accelerating, powered by a mysterious dark energy inherent in space itself.
Use a black hole to test the laws of thermodynamics, taking a deeper look at the capacity of gravity to pull matter together and increase entropy at the same time. Probe Stephen Hawking’s most surprising discovery, and then learn that the same force that pulls the apple down and steers the stars in their courses is also nature’s ultimate source of order and complexity.
Survey the greatest unsolved problem in theoretical physics: the search for a quantum theory of gravity. Examine string theory, loop quantum gravity, and also entropic gravity, which suggests a revolutionary link with thermodynamics. Close the course with a deepened appreciation for the connection between everyday features of gravity and the most exciting questions in contemporary physics and cosmology.